Taylor Arnold, Michael Kane, and Bryan Lewis

A Computational Approach
to Statistical Learning

Contents

Preface

1 Introduction

1.1 Computational approach
1.2 Statistical learning oL Lo
1.3 Example
1.4 Prerequisites L
1.5 How toread thisbook
1.6 Supplementary materials oo

1.7 Formalisms and terminology
1.8 Exercises

2 Linear Models

2.1 Introduction
2.2 Ordinary least squares
2.3 The normal equations
2.4 Solving least squares with the singular value decomposition .
2.5 Directly solving the linear system
2.6 () Solving linear models using the QR decomposition
2.7 (%) Sensitivity analysis L.
2.8 (%) Relationship between numerical and statistical error

2.9 Implementation and notes
2.10 Application: Cancer incidence rates
2.11 Exercises o

3 Ridge Regression and Principal Component Analysis
3.1 Variancein OLS
3.2 Ridge regression Lo
3.3 (%) A Bayesian perspective L.
3.4 Principal component analysis L.
3.5 Implementation and notes
3.6 Application: NYC taxicabdata
3.7 Exerciseso

5

O IO UtWwN ==

43
43
46
53
56
63
65
72

vi

Linear Smoothers

4.1 Non-Linearity
4.2 Basisexpansion
4.3 Kernel regression Lo
4.4 Local regression L.
4.5 Regression splines
4.6 (%) Smoothing splines
4.7 (%) B-splines L
4.8 Implementation and notes
4.9 Application: U.S. census tract data
4.10 Exerciseso

Generalized Linear Models

5.1 Classification with linear models
5.2 Exponential families
5.3 Iteratively reweighted GLMs
5.4 (%) Numerical issues
5.5 (%) Multi-Class regression
5.6 Implementation and notes
5.7 Application: Chicago crime prediction
5.8 Exercises Lo o

Additive Models

6.1 Multivariate linear smoothers
6.2 Curse of dimensionality
6.3 Additivemodels
6.4 (%) Additive models as linear models
6.5 (%) Standard errors in additive models
6.6 Implementation and notes
6.7 Application: NYC flights data
6.8 Exercises

Penalized Regression Models

7.1 Variable selection
7.2 Penalized regression with the £y3- and f;-norms
7.3 Orthogonal data matrix
7.4 Convex optimization and the elasticnet
7.5 Coordinate descent

7.6 (%) Active set screening using the KKT conditions

7.7 (%) The generalized elastic net model
7.8 Implementation and notes
7.9 Application: Amazon product reviews
7.10 Exercises oo

Contents

75

(0]

Contents

8 Neural Networks
8.1 Dense neural network architecture
8.2 Stochastic gradient descent L. L.
8.3 Backward propagation of errors
8.4 Implementing backpropagation
8.5 Recognizing handwritten digits
8.6 (%) Improving SGD and regularization
8.7 (%) Classification with neural networks
8.8 (%) Convolutional neural networks
8.9 Implementation and notes
8.10 Application: Image classification with EMNIST
8.11 Exerciseso

9 Dimensionality Reduction

9.1 Unsupervised learning
9.2 Kernel functions Lo oL
9.3 Kernel principal component analysis
9.4 Spectral clustering L oL Lo
9.5 t-Distributed stochastic neighbor embedding (t-SNE)

9.6 Autoencoders
9.7 Implementation and notes
9.8 Application: Classifying and visualizing fashion MNIST

9.9 Exercises

10 Computation in Practice
10.1 Reference implementations
10.2 Sparse matrices L oo
10.3 Sparse generalized linear models
10.4 Computation on row chunks
10.5 Feature hashing
10.6 Data quality issueso
10.7 Implementation and notes
10.8 Application Lo
10.9 Exercises

A Linear algebra and matrices
A1 Vector spaces o oo
A2 Matrices e

B Floating Point Arithmetic and Numerical Computation
B.1 Floating point arithmetic
B.2 Computational effort

Bibliography

Index

vii

207
207
211
213
216
224
226
232
239
249
249
259

261
261
262
266
272
277
282
283
284
295

297
297
298
304
307
311
318
320
321
329

331
331
333

337
337
340

343

359

Preface

This book was written to supplement the existing literature in statistical
learning and predictive modeling. It provides a novel treatment of the com-
putational details underlying the application of predictive models to modern
datasets. It grew out of lecture notes from several courses we have taught at
the undergraduate and graduate level on linear models, convex optimization,
statistical computing, and supervised learning.

The major distinguishing feature of our text is the inclusion of code snip-
pets that give working implementations of common algorithms for estimating
predictive models. These implementations are written in the R programming
language using basic vector and matrix algebra routines. The goal is to demys-
tify links between the formal specification of an estimator and its application
to a specific set of data. Seeing the exact algorithm used makes it possible
to play around with methods in an understandable way and experiment with
how algorithms perform on simulated and real-world datasets. This try and
see approach fits a common paradigm for learning programming concepts. The
reference implementations also illustrate the run-time, degree of manual tun-
ing, and memory requirements of each method. These factors are paramount
in selecting the best methods in most data analysis applications.

In order to focus on computational aspects of statistical learning, we high-
light models that can be understood as extensions of multivariate linear re-
gression. Within this framework, we show how penalized regression, additive
models, spectral clustering, and neural networks fit into a cohesive set of meth-
ods for the construction of predictive models built on core concepts from linear
algebra. The general structure of our text follows that of the two popular texts
An Introduction to Statistical Learning (ISL) [87] and The Elements of Sta-
tistical Learning (ESL) [60]. This makes our book a reference for traditional
courses that use either of these as a main text. In contrast to both ISL and
ESL, our text focuses on giving an in-depth analysis to a significantly smaller
set of methods, making it more conducive to self-study as well as appropriate
for second courses in linear models or statistical learning.

Each chapter, other than the first, includes a fully worked out application
to a real-world dataset. In order to not distract from the main exposition,
these are included as a final section to each chapter. There are also many
end of chapter exercises, primarily of a computational nature, asking readers
to extend the code snippets used within the chapter. Common tasks involve
benchmarking performance, adding additional parameters to reference imple-
mentations, writing unit tests, and applying techniques to new datasets.

ix

X Preface

Audience

This book has been written for several audiences: advanced undergraduate
and first-year graduate students studying statistical or machine learning from
a wide-range of academic backgrounds (i.e., mathematics, statistics, computer
science, engineering); students studying statistical computing with a focus on
predictive modeling; and researchers looking to understand the algorithms
behind common models in statistical learning. We are able to simultaneously
write for several backgrounds by focusing primarily on how techniques can be
understood within the language of vector calculus and linear algebra, with a
minimal discussion of distributional and probabilistic arguments. Calculus and
linear algebra are well-studied across the mathematical sciences and benefit
from direct links to both the motivation and implementations of many com-
mon estimators in statistical learning. While a solid background in calculus-
based statistics and probability is certainly helpful, it is not strictly required
for following the main aspects of the text.

The text may also be used as a self-study reference for computer scien-
tists and software engineers attempting to pivot towards data science and
predictive modeling. The computational angle, in particular our presenting of
many techniques as optimization problems, makes it fairly accessible to read-
ers who have taken courses on algorithms or convex programming. Techniques
from numerical analysis, algorithms, data structures, and optimization theory
required for understanding the methods are covered within the text. This ap-
proach allows the text to serve as the primary reference for a course focused on
numerical methods in statistics. The computational angle also makes it a good
choice for statistical learning courses taught or cross-listed with engineering
or computer science schools and departments.

Online references

All of the code and associated datasets included in this text are available for
download on our website https://comp-approach.com.

Notes to instructors

This text assumes that readers have a strong background in matrix alge-
bra and are familiar with basic concepts from statistics. At a minimum stu-
dents should be familiar with the concepts of expectation, bias, and variance.

Preface xi

Readers should ideally also have some prior exposure to programming in R.
Experience with Python or another scripting language can also suffice for
understanding the implementations as pseudocode, but it will be difficult to
complete many of the exercises.

It is assumed throughout later chapters that readers are familiar with the
introductory material in Chapter 1 and the first four sections of Chapter 2; the
amount of time spent covering this material is highly dependent on the prior
exposure students have had to predictive modeling. Several chapters should
also be read as pairs. That is, we assume that readers are familiar with the
first prior to engaging with the second. These are:

e Chapter 2 (Linear Models) and Chapter 3 (Ridge Regression and PCA)
e Chapter 4 (Linear Smoothers) and Chapter 6 (Additive Models)

e Chapter 5 (Generalized Linear Models) and Chapter 7 (Penalized Regres-
sion Models)

Within each individual chapter, the material should be covered in the order
in which it is presented, though most sections can be introduced quite briefly
in the interest of time.

Other than these dependencies, the chapters can be re-arranged to fit
the needs of a course. In a one-semester undergraduate course on statistical
learning, for example, we cover Chapters 1, 2, 5, 7, and 9 in order and in full.
Time permitting, we try to include topics in neural networks (Chapter 8) as
final projects. When teaching a semester long course on linear models to a
classroom with undergraduates and graduate students in statistics, we move
straight through Chapters 1 to 6. For a statistical learning class aimed at
graduate students in statistics, we have presented Chapter 1 in the form of
review before jumping into Chapter 4 and proceeded to cover all of Chapters 6
through 10.

Completing some of the end-of-chapter exercises is an important part of
understanding the material. Many of these are fairly involved, however, and
we recommend letting students perfect their answers to a curated set of these
rather than having them complete a minimally sufficient answer to a more
exhaustive collection.

8

Neural Networks

8.1 Dense neural network architecture

Neural networks are a broad class of predictive models that have enjoyed con-
siderably popularity over the past decade. Neural networks consist of a col-
lection of objects, known as neurons, organized into an ordered set of layers.
Directed connections pass signals between neurons in adjacent layers. Predic-
tion proceeds by passing an observation X; to the first layer; the output of the
final layer gives the predicted value 7;. Training a neural network involves up-
dating the parameters describing the connections in order to minimize some
loss function over the training data. Typically, the number of neurons and
their connections are held fixed during this process. The concepts behind
neural networks have existed since the early 1940s with the work of Warren
McCulloch and Walter Pitts [119]. The motivation for their work, as well as
the method’s name, drew from the way that neurons use activation poten-
tials to send signals throughout the central nervous system. These ideas were
later revised and implemented throughout the 1950s [55, 139]. Neural net-
works, however, failed to become a general purpose learning technique until
the early-2000s, due to the fact that they require large datasets and extensive
computing power.

Our goal in this chapter is to de-mystify neural networks by showing that
they can be understood as a natural extension of linear models. Specifically,
they can be described as a collection of inter-woven linear models. This shows
how these techniques fit naturally into the sequence of other techniques we
have studied to this point. Neural networks should not be understood as a
completely separate approach to predictive modeling. Rather, they are an
extension of the linear approaches we have studied applied to the problem of
detecting non-linear interactions in high-dimensional data.

A good place to begin is the construction of a very simple neural network.
Assume that we have data where the goal is to predict a scalar response y
from a scalar input x. Consider applying two independent linear models to
this dataset (for now, we will ignore exactly how the slopes and intercepts will
be determined). This will yield two sets of predicted values for each input,

207

208 Neural Networks

FIGURE 8.1: A diagram describing a simple neural network with one input
(2), two hidden nodes (z; and z3), and one output (v). Arrows describe linear
relationships between the inputs and the outputs. Each node is also associated
with an independent bias term, which is not pictured.

which we will denote by z; and z9

z1=bi+x-w (81)
29 = by +x - wo (82)

This requires four parameters: two intercepts and two slopes. Notice that we
can consider this as either a scalar equation for a single observation z; or a
vector equation for the entire vector of x.

Now, we will construct another linear model with the outputs z; as inputs.
We will name the output of this next regression model z3:

z3 :b3+2’1 s Ul + 22 U2 (83)

Here, we can consider z3 as being the predicted value 3. For a visual descrip-
tion of the relationship between these variables, see Figure 8.1. What is the
relationship between z3 and z?7 In fact, this is nothing but a very complex
way of describing a linear relationship between z3 and x using 7 parameters
instead of 2. We can see this by simplifying:

23 =bg + 21 Uy + 29 - U (
=bz+ (b1 +x-wi)us + (ba + = - wa)us (
= (bsg+uy - by +ug b))+ (wy-up +ws-uz) - x (
= (intercept) + (slope) - = (

0 ‘00 ‘oo ‘oo
ES TR NRS TNN
AR AN

Figure 8.2 shows a visual demonstration of how the first two regression models
reduce to form a linear relationship between = and zs.

What we have just described is a very simple neural network with four
neurons: x, z1, 22, and z3. As shown in Figure 8.1, these neurons are organized
into three layers with each neuron in a given layer connected to every neuron
in the following layer. The first layer, containing just x is known as the input

Dense neural network architecture 209

FIGURE 8.2: The top two plots show a linear function mapping the x-axis to
the y-axis. Adding these two functions together yields a third linear relation-
ship. This illustrates a simple neural network with two hidden nodes and no
activation functions.

layer and the one containing just z3 known as the output layer. Middle layers
are called hidden layers. The neurons in the hidden layers are known as hidden
nodes. As written, there is no obvious way of determining the unknown slopes
and intercepts. Using the mean squared error as a loss function is reasonable
but the model is over-parametrized; there are infinitely many ways to describe
the same model. More importantly, there is seemingly no benefit to the neural
network architecture here compared to that of a simple linear regression. Both
describe the exact same set of relationships between x and y but the latter

210 Neural Networks

{
1

FIGURE 8.3: The top two plots show a linear function mapping the x-axis to
the y-axis. The third diagram shows what happens when we add the first two
lines together after applying the ReLU activation. In other words, we take the
positive part of each function and add it to the other. The resulting function
in the third diagram now gives a non-linear relationship between the x-axis
and y-axis, illustrating how the use of activation functions is essential to the
functioning of neural networks.

has a fast algorithm for computing the unknown parameters and usually has
a unique solution.

One small change to our neural network will allow it to capture non-linear
relationships between x and y. Instead of writing z3 as a linear function of z;

Stochastic gradient descent 211
and z9, we first transform the inputs by a function o. Namely,
z3 =bs 4+ 0(z1) - us + 0o(22) - ug (8.8)

The function o is not a learned function. It is just a fixed mapping that takes
any real number and returns another real number. In the neural network
literature it is called an activation function. A popular choice is known as a
rectified linear unit (ReLU), which pushes negative values to 0 but returns
positive values unmodified:

r, ifx>0

i (8.9)
0, otherwise

RelLU(x) = {

The addition of this activation function greatly increases the set of possible
relationships between x and z3 that are described by the neural network.
Figure 8.3 visually shows how we can now create non-linear relationships by
combining two linear functions after applying the ReLLU function. The output
now looks similar to a quadratic term. By including more hidden units into
the model, and more input values into the first layer, we can create very
interesting non-linear interactions in the output. In fact, as shown in the work
of Barron, nearly any relationship can be approximated by such a model [16].

Allowing the neural network to describe non-linear relationships does come
at a cost. We no longer have an analytic formula of finding the intercepts and
slopes that minimizes the training loss. Iterative methods, such as those used
for the elastic net in Chapter 7, must be used. Sections 8.2 and 8.3 derive the
results needed to efficiently estimate the optimal weights in a neural network.

8.2 Stochastic gradient descent

Gradient descent is an iterative algorithm for finding the minimum value of a
function f. It updates to a new value by the formula

Wnew = Wold — 1 vwf(wold)7 (810)

for a fixed learning rate 1. At each step it moves in the direction the function
locally appears to be decreasing the fastest, at a rate proportional to how
fast it seems to be decreasing. Gradient descent is a good algorithm choice
for neural networks. Faster second-order methods involve the Hessian matrix,
which requires the computation of a square matrix with dimensions equal to
the number of unknown parameters. Even relatively small neural networks
have tens of thousands of parameters making storage and computation of
the Hessian matrix infeasible. Conversely, in Section 8.3 we will see that the
gradient can be computed relatively quickly.

212 Neural Networks

Neural networks generally need many thousands of iterations to converge
to a reasonable minimizer of the loss function. With large datasets and models,
while still feasible, gradient descent can become quite slow. Stochastic gradient
descent (SGD) is a way of incrementally updating the weights in the model
without needing to work with the entire dataset at each step. To understand
the derivation of SGD, first consider updates in ordinary gradient descent:

(wm) _n.vwf) — w® (8.11)

Notice that for squared error loss (it is also true for most other loss functions),
the loss can be written as a sum of component losses for each observation. The
gradient, therefore, can also be written as a sum of terms over all of the data
points.

fw) =3 _(@iw) = y:)* (8.12)
=D filw) (8.13)
Vuf =Y Vufi (8.14)

This means that we could write gradient descent as a series of n steps over
each of the training observations.

(w(o) —(n/n) - Vo fl) — w® (8.15)
(w(l) —(n/n) - Vo fg) — w® (8.16)
(8.17)

(w(”fl) —(n/n) - Vo fn> — w™ (8.18)
(8.19)

The output w(™ here is exactly equivalent to the w(?) from before.

The SGD algorithm actually does the updates in an iterative fashion, but
makes one small modification. In each step it updates the gradient with respect
to the new set of weights. Writing n’ as 1 divided by the sample size, we can
write this as:

(w(o) — 77/ . vw(o) fl) — w(l) (820)
(w(l) —n- Vw<1)f2) — w® (8.21)
(8.22)

(w(”_l) -0 Vo fn) — w™ (8.23)

Backward propagation of errors 213

In comparison to the standard gradient descent algorithm, the approach of
SGD should seem reasonable. Why work with old weights in each step when
we already know what direction the vector w is moving? Notice that SGD does
not involve any stochastic features other than being sensitive to the ordering
of the dataset. The name is an anachronism stemming from the original paper
of Robbins and Monro which suggested randomly selecting the data point in
each step instead of cycling through all of the training data in one go [138].

In the language of neural networks, one pass through the entire dataset
is called an epoch. It results in as many iterations as there are observations
in the training set. A common variant of SGD, and the most frequently used
in the training of neural networks, modifies the procedure to something be-
tween pure gradient descent and pure SGD. Training data are grouped into
mini-batches, typically of about 32-64 points, with gradients computed and
parameters updated over the entire mini-batch. The benefits of this tweak are
two-fold. First, it allows for faster computations as we can vectorize the gra-
dient calculations of the entire mini-batch. Secondly, there is also empirical
research suggesting that the mini-batch approach stops the SGD algorithm
from getting stuck in saddle points [28, 63]. This latter feature is particularly
important because the loss function in a neural network is known to exhibit
a dense collection of saddle points [41].

8.3 Backward propagation of errors

In order to apply SGD to neural networks, we need to be able to compute
the gradient of the loss function with respect to all of the trainable param-
eters in the model. For dense neural networks, the relationship between any
parameter and the loss is given by the composition of linear functions, the
activation function o, and the chosen loss function. Given that activation and
loss functions are generally well-behaved, in theory computing the gradient
function should be straightforward for a given network. However, recall that
we need to have thousands of iterations in the SGD algorithm and that even
small neural networks typically have thousands of parameters. An algorithm
for computing gradients as efficiently as possible is essential. We also want
an algorithm that can be coded in a generic way that can then be used for
models with an arbitrary number of layers and neurons in each layer.

The backwards propagation of errors, or just backpropagation, is the stan-
dard algorithm for computing gradients in a neural network. It is conceptually
based on applying the chain rule to each layer of the network in reverse order.
The first step consists in inserting an input x into the first layer and then
propagating the outputs of each hidden layer through to the final output. All
of the intermediate outputs are stored. Derivatives with respect to parame-
ters in the last layer are calculated directly. Then, derivatives are calculated

214 Neural Networks

showing how changing the parameters in any internal layer affect the output
of just that layer. The chain rule is then used to compute the full gradient in
terms of these intermediate quantities with one pass backwards through the
network. The conceptual idea behind backpropagation can be applied to any
hierarchical model described by a directed acyclic graph (DAG). Our discus-
sion here will focus strictly on dense neural networks, with approaches to the
more general problem delayed until Section 8.9.

We now proceed to derive the details of the backpropagation algorithm.
One of the most important aspects in describing the algorithm is using a good
notational system. Here, we will borrow from the language of neural networks
in place of our terminology from linear models. Intercept terms become biases,
slopes are described as weights, and we will focus on computing the gradient
with respect to a single row of the data matrix X;. Because we cannot spare
any extra indices, X; will be denoted by the lower case x. To use backprop-
agation with mini-batch SGD, simply compute the gradients for each sample
in the mini-batch and add them together. Throughout, superscripts describe
which layer in the neural network a variable refers to. In total, we assume
that there are L layers, not including the input layer, which we denote as
layer O (the input layer has no trainable weights so it is largely ignored in the
backpropagation algorithm).

We will use the variable a to denote the outputs of a given layer in a neural
network, known as the activations. As the name suggests, we will assume that
the activate function as already been applied where applicable. The activations
for the 0’th layer is just the input x itself,

a® = . (8.24)

For each value of [between 1 and L, the matrix wé‘,k gives the weights on
the kth neuron in the (I — 1)-st layer within the jth neuron in the Ist layer.
Likewise, the values bg- give the bias term for the jth neuron in the Ist layer.
The variable z is used to describe the output of each layer before applying
the activation function. Put together, we then have the following relationship
describing the a’s, w’s, b’s, and z’s:

Zd=wload !+ (8.25)
al =o(2h) (8.26)
These equations hold for all I from 1 up to (and including) L. Layer L is

the output layer and therefore the activations a” correspond to the predicted
response:

al =7. (8.27)

Finally, we also need a loss function f. As we are dealing with just a single
observation at a time, we will write f as a function of only one input. For
example, with mean squared error we would have:

fly,a") = (y —a")? (8.28)

Backward propagation of errors 215

The global loss function is assumed to be the sum over the losses of each
individual observation. There is a great deal of terminology and notation here,
but it is all needed in order to derive the backpropagation algorithm. You
should make sure that all of the quantities make sense before proceeding.

The equations defining backpropagation center around derivatives with
respect to the quantities z'. As a starting point, notice that these derivatives
give the gradient terms of the biases, bé.,

of of ﬁzé
=z 27 (8.29)
8b§- azé (“)bé-
0
_ 87{_ (1) (8.30)
J
of

J

To get the gradient with respect to the weights, we need to weight the deriva-
tives with respect to z by the activations in the prior layer,

of of 07
el " 02 dul (8:52)
Jk J Jk
of ,_
=5 cal7t (8.33)

J

We see already why a forward pass through the data is required as a starting
point; this forward pass gives us all the current activations af;l. At this point,
we now have reduced the problem of computing the gradient to computing
the derivatives of the responses z'.

The derivatives in the Lth layer are straightforward to compute directly

with the chain rule, taking advantage of the fact that ajL is a function of only
. :

z; and no other activations in the Lth layer:
of of Oak
5.8 = Z 5oL 78212 (8.34)
j k k J
of Baf
== —F 8.35
daf 0zf (8:35)
of
=7 -0’ (z)) (8.36)

J

The derivative of the loss function with respect to the activations in the last
layer should be easy to compute since, as shown in Equation 8.28, the loss
function is generally written directly in terms of the activations in the last

layer.
The last and most involved step is to figure out how the derivatives with

216 Neural Networks

respect to z! can be written as a function of derivatives with respect to z!*!
Notice that if [# L, then we can write z!*! in terms of the responses in the
prior layer,

2t = wajnl Lo+ bt (8.37)
= Zwl“) 4 L (8.38)

From this, we can take the derivative of z,ljl with respect to zé,

b I+1
g’; l{ L/ (L), (8.39)
J

Finally, putting this together in the chain rule gives

of of 0zt
- 2 : . 4
8Zl- 6Z]l€+1 3Zl» (8 0)
—§ o z+1' witto!(2h). (8.41)

We can simplify this using the Hadamard product ® (it computes element-
wise products between matrices of the same size):

of of /
57 = [(le)T (azl.+1> © o' (2 (8.42)
J
And similarly for the last layer of the network,
of
— = 4
9.1 =V.fod ("), (8.43)

Putting these all together, backpropagation can be used to compute the gra-
dient of f with respect to the b’s and w’s using the same order of magnitude
number of steps as it takes to conduct forward propagation.

8.4 Implementing backpropagation

We now have all of the pieces required to train the weights in a neural net-
work using SGD. For simplicity we will implement SGD without mini-batches
(adding this feature is included as an exercise). We first make one minor
change to the algorithm in Section 8.3. Notice that the current setup applies
an activation function to the final layer of the network. If this activation is

Implementing backpropagation 217

a ReLU unit, this makes it impossible to predict negative values. Typically,
when fitting a neural network to a continuous response we do not use an acti-
vation in the final layer. In other words, 2% = a’. Equivalently, we can define
the final o to be the identity function. This just makes the second term on
the right-hand side of Equation 8.43, ¢/(z%), equal to 1. We will need this
activation again when doing classification in Section 8.7.

The code for training and predicting with neural networks is best split
into individual functions. Our first step is to define a function that returns
the weights and biases of a network in a usable format. We will store these
parameters in a list, with one element per layer. Each element is itself a list
containing one element w (a matrix of weights, w') and one element b (a vector
of biases, b'). The function casl_nn_make_weights creates such a list, filled
with randomly generated values from a normal distribution.

Create list of weights to describe a dense neural network.
#

Args:

sizes: A vector giving the size of each layer, including
the input and output layers.

#

Returns:

A list containing initialized weights and biases.
casl_nn_make_weights <-

function(sizes)

{

L <- length(sizes) - 1L
weights <- vector("list", L)
for (j in seq_len(L))
{
w <- matrix(rnorm(sizes[j] * sizes[j + 1L1),
ncol = sizes[j],
nrow = sizes[j + 1L])
weights[[j]] <- list(w=w,
b=rnorm(sizes[j + 1L1))
}
weights
}

Next, we need to define the ReLLU function for the forward pass:

Apply a rectified linear unit (ReLU) to a vector/matrix.
#

Args:

v: A numeric vector or matrix.

#

Returns:

218 Neural Networks

The original input with negative values truncated to zero.
casl _util RelLU <-
function(v)
{
vlv < 0] <-0
v

}

And the derivative of the ReLLU function for the backwards pass:

Apply derivative of the rectified linear unit (ReLU).
#
Args:
v: A numeric vector or matrix.
#
Returns:
Sets positive values to 1 and negative values to zero.
casl_util_RelLU_p <-
function(v)
{
p<-v*0
plv > 0] <- 1
p
}

We also need to differentiate the loss function for backpropagation. Here we
use mean squared error (multiplied by 0.5).

Derivative of the mean squared error (MSE) function.
#

Args:

y: A numeric vector of responses.

a: A numeric vector of predicted responses.

#

Returns:

Returned current derivative the MSE function.

casl_util_mse_p <-
function(y, a)
{
(a -y
}

We will write the code to accept a generic loss function derivative.

With the basic elements in place, we now need to describe how to take
an input x and compute all of the responses z and activations a. These will
also be stored as lists with one element per layer. Our function here accepts
a generic activation function sigma.

Implementing backpropagation 219

Apply forward propagation to a set of NN weights and biases.
#

Args:

x: A numeric vector representing one row of the input.

weights: A list created by casl_nn_make_weights.

sigma: The activation function.

#

Returns:

A list containing the new weighted responses (z) and

activations (a).

casl_nn_forward_prop <-
function(x, weights, sigma)
{
L <- length(weights)
z <- vector("list", L)
a <- vector("list", L)
for (j in seq_len(L))
{
a_jl <= if(j == 1) x else al[j - 1L]1]
z[[j]] <- weights[[jl11$w %*% a_j1l + weights[[j1]1%Db
al[jl] <- if (j != L) sigma(z[[jl1]) else z[[jl]
}

list(z=z, a=a)

}

With the forward propagation function written, next we need to code a back-
propagation function using the results from Equations 8.42 and 8.43. We will
have this function accept the output of the forward pass and functions giving
the derivatives of the loss and activation functions.

Apply backward propagation algorithm.

#

Args:

x: A numeric vector representing one row of the input.
y: A numeric vector representing one row of the respomnse.
weights: A list created by casl_nn_make_weights.

f_obj: Output of the function casl_nn_forward_prop.

sigma_p: Derivative of the activation function.

f_p: Derivative of the loss function.

#

Returns:

A list containing the new weighted responses (z) and
activations (a).

casl_nn_backward_prop <-

220 Neural Networks

function(x, y, weights, f_obj, sigma_p, f_p)
{
z <- f_obj$z; a <- f_obj$a
L <- length(weights)
grad_z <- vector("list", L)
grad_w <- vector("list", L)
for (j in rev(seq_len(L)))
{
if (j == L)
{
grad_z[[j1] <- f_p(y, alljll)
} else {
grad_z[[j]] <- (t(weights[[j + 111$w) %*J
grad_z[[j + 1]]1) * sigma_p(z[[jl])
¥
a_jl <= if(j == 1) x else al[j - 1L]]
grad_wl[jl] <- grad_z[[jl] %*% t(a_j1)
}

list(grad_z=grad_z, grad_w=grad_w)
}

The output of the backpropagation function gives a list of gradients with
respect to z and w. Recall that the derivatives with respect to z are equivalent
to those with respect to the bias terms (Equation 8.31).

Using these building blocks, we can write a function casl_nn_sgd that
takes input data, runs SGD, and returns the learned weights from the model.
As inputs we also include the number of epochs (iterations through the data)
and the learning rate eta.

Apply stochastic gradient descent (SGD) to estimate NN.

#

Args:

X: A numeric data matrix.

y: A numeric vector of responses.

sizes: A numeric vector giving the sizes of layers in
the neural network.

epochs: Integer number of epochs to computer.

eta: Positive numeric learning rate.

weights: Optional list of starting weights.

#

Returns:

A list containing the trained weights for the network.

casl_nn_sgd <-
function(X, y, sizes, epochs, eta, weights=NULL)
{

Implementing backpropagation 221

if (is.null(weights))
{
weights <- casl_nn_make_weights(sizes)

}

for (epoch in seq_len(epochs))
{
for (i in seq_len(nrow(X)))
{
f_obj <- casl_nn_forward_prop(X[i,], weights,
casl_util_ReLU)
b_obj <- casl_nn_backward_prop(X[i,], y[i,], weights,
f_obj, casl_util_RelU_p,
casl_util_mse_p)

for (j in seq_along(b_obj))
{
weights[[j11$b <- weights[[j11$b -
eta * b_obj$grad_z[[j]]
weights[[j11$w <- weights[[j11$w -
eta * b_obj$grad wl[jl]

weights
}

We have also written in the ability to include an optional set of starting
weights. This allows users to further train a fit model, possibly with a new
learning rate or new dataset.

Finally, we need a function that takes the learned weights and a new
dataset X and returns the fitted values from the neural network.

Predict values from a training neural network.

#

Args:

weights: List of weights describing the neural network.
X_test: A numeric data matrix for the predictioms.

#

Returns:

A matrix of predicted values.

casl_nn_predict <-
function(weights, X_test)
{

222 Neural Networks

0.8

0.4

0.0

FIGURE 8.4: This scatter plot shows simulated data with a scalar input X and
scalar output y (a noisy version of X?2). The dashed line shows the estimated
functional relationship from a neural network with one hidden layer containing
5 hidden nodes. The solid line shows the estimated relationship using a model
with 25 hidden nodes. Notice that the latter does a better job of fitting the
quadratic relationship but slightly overfits near X equal to 0.1. Rectified linear
units (ReLUs) were used as activation functions.

p <- length(weights[[length(weights)]]$b)
y_hat <- matrix(0, ncol = p, nrow = nrow(X_test))
for (i in seq_len(nrow(X_test)))
{
a <- casl_nn_ forward_prop(X_test[i,], weights,
casl_util_ReLU)$a
y_hat[i,] <- a[[length(a)]l]
}

y_hat
}

The implementation here applies the forward propagation function and returns
only the last layer of activations.

We can test the code on a small dataset using just a one column input X
and one hidden layer with 25 nodes.

X <- matrix(runif (1000, min=-1, max=1), ncol=1)
y <= X[,1,drop = FALSE]"2 + rnorm(1000, sd = 0.1)
weights <- casl_nn_sgd(X, y, sizes=c(1l, 25, 1),

Implementing backpropagation 223

epochs=25, eta=0.01)
y_pred <- casl_nn_predict(weights, X)

The output in Figure 8.4 shows that the neural network does a good job of
capturing the non-linear relationship between X and y.

Coding the backpropagation algorithm is notoriously error prone. It is par-
ticularly difficult because many errors lead to algorithms that find reasonable,
though non-optimal, solutions. A common technique is to numerically esti-
mate the gradient of each parameter for a small model and then check the
computed gradients compared to the numerical estimates. Specifically, we can
compute

f(wo +h) — f(wo — h)
2h

Vo fwo) ~ (8.44)

For a small vector h with only one non-zero parameter and compare this with
the perturbation applied to all trainable parameters in the model.

The code to do this is relatively straightforward. Note that we need to
compute the true gradient over all of the data points, not just for a single
input z. The reason for this is that given the ReLU activations, many of the
derivatives will be trivially equal to zero for many weights with a given input.
Added up over all training points, however, this will not be the case for most
parameters.

Perform a gradient check for the dense NN code.
#
Args:
X: A numeric data matrix.
y: A numeric vector of responses.
weights: List of weights describing the neural network.
h: Positive numeric bandwidth to test.

Returns:
The largest difference between the empirical and analytic
gradients of the weights and biases.
casl_nn_grad_check <-
function(X, y, weights, h=0.0001)
{
max_diff <- 0
for (level in seq_along(weights))
{
for (id in seq_along(weights[[level]]$w))
{

H OH H H H H H O H

grad <- rep(0, nrow(X))
for (i in seq_len(nrow(X)))
{
f_obj <- casl_nn_forward_prop(X[i,], weights,

224 Neural Networks

casl_util_ ReLU)
b_obj <- casl_nn_backward_prop(X[i, 1, y[i,], weights,
f_obj, casl_util_RelU_p,
casl_util_mse_p)
grad[i] <- b_obj$grad_wl[level]] [id]
}

w2 <- weights

w2[[level]l$w[id] <- w2[[levelll$w[id] + h
f_h_plus <- 0.5 * (casl_nn_predict(w2, X) - y)~2
w2[[level]ll$w[id] <- w2[[levelll$w[id] - 2 * h
f_h minus <- 0.5 * (casl_nn_predict(w2, X) - y)~2

grad_emp <- sum((f_h_plus - f_h_minus) / (2 * h))

max_diff <- max(max_diff,
abs(sum(grad) - grad_emp))
}
}
max_diff

}

We can now check our backpropagation code. Here, we will set the weights
with just a single epoch so that the resulting gradients are not too small.

weights <- casl_nn_sgd(X, y, sizes=c(1, 5, 5, 1), epochs=1,
eta=0.01)
casl_nn_grad_check(X, y, weights)

[1] 5.911716e-12

Our numeric gradients match all of the simulated gradients up to a very small
number, indicating that our computation of the gradient is accurate.

8.5 Recognizing handwritten digits

In most chapters we have saved applications with real datasets until the final
sections. It is, however, hard to show the real usage of neural networks on
simulated data. Here we will apply our neural network implementation to a
small set of images in order to illustrate how neural networks behave on real
datasets.

The MNIST dataset consists of a collection of 60,000 black and white
images of handwritten digits. The images are scaled and rotated so that each

Recognizing handwritten digits 225

0.4

o
w

train_loss

0.2

0.1

epoch

FIGURE 8.5: This plot shows the loss (root mean squared error) during train-
ing on both the training and validation sets at the end of each epoch. The
solid line is the training error and the dashed line is the validation error.

digit is relatively centered. All images are converted to be 28 pixels by 28
pixels. In Section 8.10 we will see an extension of this dataset that includes
handwritten letters. Here we work with a smaller version of MNIST that has
been down-sampled to only 7 pixels by 7 pixels and includes only the numbers
0 and 1. This is a binary prediction problem. We can use the neural network
from Section 8.4 for a continuous response by predicting the probability that
an input is equal to 1 and treating the response as a continuous variable.

The dataset consists of 6000 images for each digits. We split the data in
half to form testing and training sets; the response vector is also coded as a
matrix as required by our neural network code. The input data, X_mnist is
given as a three-dimensional array, which we flatten into a matrix by applying
the cbind function over the rows.

X_mnist <- readRDS("data/mnist_x7.rds")
mnist <- read.csv("data/mnist.csv")

X_train <- t(apply(X_mnist[mnist$train_id == "train", ,], 1L,
cbind))
X_valid <- t(apply(X_mnist[mnist$train_id == "valid", , 1, 1L,
cbind))
y_train <- matrix(mnist[mnist$train_id == "train",]$class,
ncol=1L)
y_valid <- matrix(mnist[mnist$train_id == "valid",]$class,

ncol=1L)

226 Neural Networks

To learn the output, we will fit a linear model with two hidden layers, each
containing 64 neurons. In order to plot its progress through the learning al-
gorithm, the learning algorithm will be wrapped in a loop with the training
and validation loss stored after every epoch.

results <- matrix(NA_real , ncol = 2, nrow = 25)

val <- NULL
for (i in seq_len(nrow(results)))
{

val <- casl_nn_sgd(X_train, y_train,
sizes=c(772, 64, 64, 1),
epochs=1L,
eta=0.001,
weights=val)

y_train_pred <- (casl_nn_predict(val, X_train) > 0.5)

y_train_pred <- as.numeric(y_train_pred)

y_valid_pred <- (casl_nn_predict(val, X_valid) > 0.5)

y_valid_pred <- as.numeric(y_valid_pred)

results[i,1] <- sqrt(mean((y_train - y_train_pred)~2))

results[i,2] <- sqrt(mean((y_valid - y_valid_pred)~2))
}

As we are treating this as a continuous response, the results are stored in
terms of mean squared error. The values in results are plotted in Figure 8.5.
We see that towards the end of the training algorithm the training set error
improves but the validation error asymptotes to a value 0.1. A selection of
images in the validation set that are misclassified by the algorithm are shown
in Figure 8.6.

8.6 (x) Improving SGD and regularization

The straightforward SGD and backpropagation algorithms implemented in
Section 8.4 performs reasonably well. While our R implementation will run
quite slowly compared to algorithms written in a compiled language, the al-
gorithms themselves could easily scale to problems with several hidden layers
and millions of observations. There are, however, several improvements we can
make to the model and the training algorithm that reduce overfitting, have
a lower tendency to get stuck in local saddle points, or converge in a smaller
number of epochs.

One minor change is to update the weight initialization algorithm. We want
the starting activations a' to all be of roughly the same order of magnitude

with the initialized weights. Assuming that the activations in layer a!~! are

(x) Improving SGD and regularization 227

d s

0
E
2
”

o
C
7
o

N o e 00
b (TG
e NN
g5 70D
Vel 0 2N

LI AR T

0% %O e -
oy e

FIGURE 8.6: Misclassified samples from the down-sampled MNIST datasets
with only 7-by-7 images.

fixed, we can compute the variance of z! as a function of the weights in the
lth layer,

lel
Var(z;») = Var Z [wéiafc_l + b, (8.45)
k=1
lel
192
= Z Var('w;i) [aéC '] (8.46)
k=1

Where M! gives the number of neurons in the Ith layer of the model. If we
sample wé{l from the same distribution and assume that the activations in
the (I — 1)st layer are already of approximately the same magnitude, then we
see that

Var(z;-) oc ML Var(wél) (8.47)
This suggests that we sample the weights such that

1

) (8.48)

wé-l ~ N (0
This is the recommendation proposed by Yann LeCun and Léon Bottou in
a technical report on the subject of neural network initializers [103]. More
complex procedures have been suggested by Kaiming He [73] and Xavier Glo-
rot [67]. In our small example with just one hidden layer, the initializations

228 Neural Networks

did not have a large effect. For models with many layers, particularly if they
are of vastly different sizes, the choice of initialization scheme can drastically
improve the performance of the model learned by SGD.

We now integrate the new initialization scheme into a new version of the
casl_nn_make_weights function. We keep the bias terms sampled from a
standard normal distribution; it is also reasonable to set these equal to zero
at the start.

Create list of weights and momentum to describe a NN.
#

Args:

sizes: A vector giving the size of each layer, including
the input and output layers.

#

Returns:

A list containing initialized weights, biases, and

momentum.

casl_nn_make_weights_mu <-

function(sizes)

{

L <- length(sizes) - 1L
weights <- vector("list", L)
for (j in seq_len(L))
{
w <- matrix(rnorm(sizes[j] * sizes[j + 1L],
sd = 1/sqrt(sizes[jl)),
ncol = sizes[j],
nrow = sizes[j + 1L])
v <- matrix (O,
ncol sizes[j],
nrow = sizes[j + 1L])
weights[[j1] <- list(w=w,
v=v,
b=rnorm(sizes[j + 1L1))

b
weights
b

This is a minor change that can be used as is in the casl_nn_sgd with no
further modifications.

The large number of trainable parameters in a neural network can obvi-
ously lead to overfitting on the training data. Many of the tweaks to the basic
neural network structure and SGD are directly related to addressing this con-
cern. One common technique is early stopping. In this approach the validation
error rate is computed after each epoch of the SGD algorithm. When the val-
idation rate fails to improve after a certain number of epochs, or begins to

(x) Improving SGD and regularization 229

degrade, the SGD algorithm is terminated. Early stopping is almost always
used when training neural networks. While neural networks are often framed
as predictive models described by an optimization problem, this early stop-
ping criterion means that in practice this is not the case. Neural networks are
trained with an algorithm motivated by an optimization problem, but are not
directly attempting to actually solve the optimization task.

Another approach to address overfitting is to include a penalty term di-
rectly into the loss function. We can add an £s-norm, for example, as was done
with ridge regression in Section 3.2,

Fa(w,D) = Fwb) + 5 - ol (5.49)

Notice here that we have penalized just the weights (slopes) but not the biases
(intercepts). The gradient of f) can be written in terms of the gradient of f:

Vuwfr=Vuflw,b) + A w (8.50)

With this new form, the SGD algorithm is easy to modify. It is helpful to
simplify the gradient updates in terms of a weighted version of the old values
and a weighted version of the gradient.

Wpew $ Wold — 1 * vwfk(wold) (851)
— Wotd — N [Vw(wora) + A - w] (8.52)
— [1 — 77)\] cWolg — N wa(wold) (8.53)

Other penalties, such as the ¢1-norm or penalties on the bias terms, can also
be added with minimal difficulty.

Dropout is another clever technique for reducing over fitting during the
training for neural networks. During the forward propagation phase, activa-
tions are randomly set to zero with some fixed probability p. During backprop-
agation, the derivatives of the corresponding activations are also set to zero.
The activations are chosen separately for each mini-batch. Together, these
modifications “prevents units from co-adapting too much,” having much the
same effect as an £o-penalty without the need to choose or adapt the parame-
ter A [148]. The dropout technique is only used during training; all nodes are
turned on during prediction on new datasets (in order for the magnitude to
work out, weights need to be scaled by a factor of 1%) Dropout is a popular
technique used in most well-known neural networks and is relatively easy to
incorporate into the forward and backpropagation algorithms.

Finally, we can also modify the SGD algorithm itself. It is not feasible to
store second derivative information directly due to the large number of pa-
rameters in a neural network. However, relying only on the gradient leads to
models getting stuck at saddle points and being very sensitive to the learn-
ing rate. To alleviate this problem, we can incorporate a term known as the
momentum into the algorithm. The gradient computed on each mini-batch is

230 Neural Networks

used to update the momentum term, and the momentum term is then used to
update the current weights. This setup gives the SGD algorithm three useful
properties: if the gradient remains relatively unchanged over several steps it
will ‘pick-up speed’ (momentum) and effectively use a larger learning rate; if
the gradient is changing rapidly, the step-sizes will shrink accordingly; when
passing through a saddle point, the built up momentum from prior steps helps
propel the algorithm past the point. Expressing the momentum as the vector
v, we then have update rules,

Unew < Vold " U — 1] * wa(wold) (854)
Wnew £ []— - 77)‘] * Wold + Unew; (855)

with p some quantity between 0 and 1 (typically set between 0.7 and 0.9).
Notice that this scheme requires only storing twice as much information as
required for the gradient. Here, and in our implementation below, we apply
momentum only to the weights. It is also possible, and generally advisable, to
apply momentum terms to the biases as well.

Implementing an />-penalty term and momentum only requires changes to
the casl_nn_sgd function. Early stopping requires no direct changes and can
be applied as is by running the SGD function for a single epoch, checking the
validation rate, and then successively re-running the SGD for another epoch
starting with the current weights. Dropout requires minor modifications to
both casl_nn_forward_prop and casl_nn_backward_prop, which we leave
as an exercise.

Apply stochastic gradient descent (SGD) to estimate NN.

#

Args:

X: A numeric data matrix.

y: A numeric vector of responses.

sizes: A numeric vector giving the sizes of layers in
the neural network.

epochs: Integer number of epochs to computer.

eta: Positive numeric learning rate.

mu: Non-negative momentum term.

12: Non-negative penalty term for 12-norm.

weights: Optional list of starting weights.

#

Returns:

A list containing the trained weights for the network.

casl_nn_sgd_mu <-
function(X, y, sizes, epochs, eta, mu=0, 12=0, weights=NULL) {

if (is.null(weights))
{

weights <- casl_nn_make_weights_mu(sizes)

(x) Improving SGD and regularization 231

}
for (epoch in seq_len(epochs))
{
for (i in seq_len(nrow(X)))
{
f_obj <- casl_nn_forward_prop(X[i,], weights,
casl_util_ReLU)
b_obj <- casl_nn_backward_prop(X[i,], y[i,], weights,
f_obj, casl_util_RelU_p,
casl_util_mse_p)
for (j in seq_along(b_obj))
{
weights[[j11$b <- weights[[j11$b -
eta * b_obj$grad_z[[j]1]
weights[[j11$v <- mu * weights[[j11$v -
eta * b_obj$grad wl[j]]
weights[[j]11$w <- (1 - eta * 12) *
weights[[jI11$w +
weights[[j11$v
}
}
}
weights

}

The function accepts two new parameters, mu and 12, to define the momentum
and penalty terms, respectively.

Figure 8.7 shows the loss function during training both with and without
momentum using the data from our simulation in Section 8.4. We see that the
momentum-based algorithm trains significantly faster and seems to avoid a
saddle point that the non-momentum based SGD gets trapped in. To illustrate
the use of the fo-norm, we will apply the SGD algorithm using successively
larger values of A (12).

12_norm <- rep(NA_real , 3)
12_vals <- c(0, 0.01, 0.04, 0.05)
weights_start <- casl_nn_make_weights(sizes=c(1, 10, 1))
for (i in seq_along(1l2_vals))
{
weights <- casl_nn_sgd_mu(X, y, weights=weights_start,
epochs=10, eta=0.1,
12=12_vals[il)
12_norm[i] <- sum((weights[[1]]$w)"2)

232 Neural Networks

600

400

Loss

200

epoch

FIGURE 8.7: This plot shows the loss (mean squared error) during train-
ing on the training set as a function of the epoch number. The dashed line

uses stochastic gradient descent whereas the solid line uses stochastic gradient
descent plus momentum.

3

12 _norm

[1] 6.942948e+00 1.674410e+00 3.672386e-02 7.117368e-07

We see that, as expected, the size of the weights decreases as the penalty term
increases.

8.7 (%) Classification with neural networks

The structure of neural networks is well-suited to classification tasks with
many possible classes. In fact, we mentioned in Section 5.6 that the original
multinomial regression function in R (multinom) is contained in the nnet
package. Here, we will show how to best use neural networks for classification
and integrate these changes to our implementation.

With neural networks there is nothing special about the structure of the
output layer. As with hidden layers, it is easy to have a multi-valued output
layer. For classification tasks, we can convert a vector y of integer coded classes

(x) Classification with neural networks 233

into a matrix Y containing indicator variables for each class,

2 01000
4 00010

= (8.56)
1 10000

In neural network literature this is known as a one-hot encoding. It is equiva-
lent to the indicator variables used in Section 2.1 applied to categorical vari-
ables in the data matrix X. Now, values from the neural network in the output
layer can be regarded as probabilities over the possible categories.

Treating the output layer as probabilities raises the concern that these
values may not sum to 1 and could produce negative values or values greater
than one depending on the inputs. As we did with the logistic link function in
Section 5.1, we need to apply a function to the output layer to make it behave
as a proper set of probabilities. This will become the activation function ¢ in
the final layer that we have in Equation 8.43. The activation we use is called
the softmaz function, defined as:

af = softmax(sz) (8.57)
e
s e
It should be obvious from the definition that the returned values are all non-
negative and sum to 1 (and therefore can never be greater than 1). While we

could use squared error loss to train categorization models, it is not an ideal
choice. We instead use a quantity known as categorical cross-entropy:

fla",y) ==y - log(af) (8.59)
k

(8.58)

If the form of this seems surprising, notice that in two-class prediction this
reduces to the log-likelihood for logistic regression. In fact, the multinomial
distribution can be written as a multidimensional exponential family with the
softmax function as an inverse link function and categorical cross-entropy as
the log-likelihood function (see Section 5.2 for a description of exponential
families and [125] for more details).

The derivative of the softmax function can be written compactly as a
function of the Dirac delta operator d;;. The Dirac delta function is equal
to 1 if the indices ¢ and j match, and is equal to 0 otherwise. The softmax
derivatives then become

da} Gyen (S et) — e et
92k (3, e)2
= ak (6;; — a}). (8.61)

7

(8.60)

234 Neural Networks

With categorical cross-entropy, Equation 8.43 becomes a simple linear function
of the activations a” and the values of Y. Denoting y; as the ith column of a

particular row of Y, we have
0 0
% = —Z?Jk 9L (log(aé))
K3 k 1
= —Zyk .
k
= —Zyk .
k
— oy (O —af)
k
= aiL~ (Zyk> - Zyk “Oik
k k

_ L
= a; — Y-

L
~Oay,
L

0z;

1
of

1
‘z'aé(@k'—af)
ay,

(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

A change in the weighted response z” has a linear effect on the loss function,
a feature that stops the model from becoming too saturated with very small

or very large predicted probabilities.

In order to implement a categorical neural network, we first need a softmax

function to apply during forward propagation.

Apply the softmax function to a vector.
#
Args:
Z: A numeric vector of inputs.
#
Returns:
Output after applying the softmax function.
casl_util softmax <-
function(z)
{
exp(z) / sum(exp(z))
3

We then create a modified forward propagation function that takes advantage

of the softmax function in the final layer.

Apply forward propagation to for a multinomial NN.
#

Args:

x: A numeric vector representing one row of the input.
weights: A list created by casl_nn_make_weights.

sigma: The activation function.

(x) Classification with neural networks 235

#

Returns:

A list containing the new weighted responses (z) and
activations (a).

casl_nnmulti_forward_prop <-
function(x, weights, sigma)
{
L <- length(weights)
z <- vector("list", L)
a <- vector("list", L)
for (j in seq_len(L))
{
a_jl <- if(j == 1) x else al[j - 1L]1]
z[[j1] <- weights[[j1]1$w %*% a_jl + weights[[j1]1$Db

if (G '=1L) {
alljl] <- sigma(z[[j]])
} else {

al[jl] <- casl_util_softmax(z[[jI1])
}
}

list(z=z, a=a)

}

Similarly, we need a new backpropagation function that applies the correct
updates to the gradient of terms z% from the final layer of the model.

Apply backward propagation algorithm for a multinomial NN.

#

Args:

x: A numeric vector representing one row of the input.
y: A numeric vector representing one row of the respomnse.
weights: A list created by casl_nn_make_weights.

f_obj: Output of the function casl_nn_forward_prop.

sigma_p: Derivative of the activation function.

#

Returns:

A list containing the new weighted responses (z) and
activations (a).

casl_nnmulti_backward_prop <-
function(x, y, weights, f_obj, sigma_p)
{

z <- f_obj$z; a <- f_obj$a

L <- length(weights)

grad_z <- vector("list", L)

grad_w <- vector("list", L)

236 Neural Networks

for (j in rev(seq_len(L)))
{
if (j == L)
{
grad_z[[j]] <- alljl] -y
} else {
grad_z[[j]] <- (t(weights[[j + 1L11$w) %x*%
grad_z[[j + 1L]1]) * sigma_p(z[[jl])
}
a_j1 <- if(j == 1) x else al[[j - 1L]]
grad_wl[jl] <- grad_z[[j1] %*% t(a_j1)
}

list(grad_z=grad_z, grad_w=grad_w)
}

Next, we construct an updated SGD function that calls these new forward
and backward steps. The momentum and /5-norm terms remain unchanged.

Apply stochastic gradient descent (SGD) for multinomial NN.

#

Args:

X: A numeric data matrix.

y: A numeric vector of responses.

sizes: A numeric vector giving the sizes of layers in
the neural network.

epochs: Integer number of epochs to computer.

eta: Positive numeric learning rate.

mu: Non-negative momentum term.

12: Non-negative penalty term for 12-norm.

weights: Optional list of starting weights.

#

Returns:

A list containing the trained weights for the network.

casl_nnmulti_sgd <-
function(X, y, sizes, epochs, eta, mu=0, 12=0, weights=NULL) {

if (is.null(weights))
{

weights <- casl_nn_make_weights_mu(sizes)

3

for (epoch in seq_len(epochs))
{
for (i in seq_len(nrow(X)))

{

(x) Classification with neural networks 237

f_obj <- casl_nnmulti_forward_prop(X[i,], weights,
casl_util_ReLU)

b_obj <- casl_nnmulti_backward_prop(X[i, 1, yl[i, 1,
weights, f_obj,
casl_util_ReLU_p)

for (j in seq_along(b_obj))
{
weights[[j11$b <- weights[[j11$b -
eta * b_obj$grad_z[[j]1]
weights[[j11$v <- mu * weights[[j11$v -
eta * b_obj$grad wl[jl]
weights[[j11$w <- (1 - eta * 12) x*
weights[[j1]1$w +
weights[[j1]1$v

weights
}

Finally, we also produce a new prediction function that uses the correct
forward propagation function for classification.

Predict values from training a multinomial neural network.
#

Args:

weights: List of weights describing the neural network.
X_test: A numeric data matrix for the predictions.
#

Returns:

A matrix of predicted values.
casl_nnmulti_predict <-
function(weights, X_test)

{

p <- length(weights[[length(weights)]]$b)

y_hat <- matrix(0, ncol=p, nrow=nrow(X_test))

for (i in seq_len(nrow(X_test)))

{
a <- casl_nnmulti_forward_prop(X_test[i,], weights,

casl_util_ReLU)$a

y_hat[i,] <- al[length(a)]l]

¥

238 Neural Networks

0.75

Il
> 0.50

0.25

0.00

FIGURE 8.8: A scatter plot showing simulated data from a scalar quantity
X and a binary variable y. The lines show fitted probabilities from a neural
network with one hidden layer containing 25 neurons. Rectified linear units
(ReLUs) were used on the hidden layer and softmax activations were used
on the output layer to produce valid probabilities. The dashed line shows the
fit at the end of the first epoch, the dotted line at the end of 2 epochs, and
the solid line the solid line after 25 epochs. Stochastic gradient descent using
momentum and categorical cross-entropy was used to the train the model.

y_hat
}

The results of the prediction are a matrix with one row for each row in X_text
and one column for each class in the classification task. To get the predicted
class, can simply find whichever column contains the largest probability.

To illustrate this approach, we will simulate a small dataset with just two
classes. We again restrict ourselves to a scalar input X in order to be able to
plot the output in x-y space.

X <- matrix(runif (1000, min=-1, max=1), ncol=1)

y <= X[, 1, drop=FALSE]"2 + rnorm(1000, sd=0.1)

y <- cbind(as.numeric(y > 0.3), as.numeric(y <= 0.3))

weights <- casl_nnmulti_sgd(X, y, sizes=c(1, 25, 2),
epochs=25L, eta=0.01)

y_pred <- casl_nnmulti_predict(weights, X)

The predicted probabilities for various number of epochs are shown in Fig-
ure 8.8. During training, the predicted probabilities become more extreme as
the algorithm gains confidence that certain inputs always lead to a particular

(x) Convolutional neural networks 239

category. On the boundary regions, the neural network correctly predicts a
smooth continuum of probabilities. It also has no difficulty detecting the non-
linear relationship between the probabilities and the input X (class 1 is most
common when X is both relatively small or relatively large).

8.8 (%) Convolutional neural networks

As we have mentioned, prediction tasks with images as inputs constitute some
of most popular applications of neural networks. When images are relatively
small, it is possible to learn a neural network with individual weights placed on
each input pixel. For larger images this becomes impractical. A model learned
in this way does not take into account the spatial structure of the image, thus
throwing away useful information. The solution to this problem is to include
convolutional layers into the neural network. Convolutions apply a small set
of weights to subsections of the image; the same weights are used across the
image.

In the context of neural networks, a convolution can be described by a
kernel matrix. Assume that we have the following kernel matrix, to be applied
over a black and white image

K= (é _01) (8.68)

The convolution described by this kernel takes every pixel value and subtracts
is from the pixel value to its immediate lower right. Notice that this cannot be
applied directly to pixels in the last row or column as there is no corresponding
pixel to subtract from. The result of the kernel, then, is a new image with one
fewer row and column. As shown in Figure 8.9, the convolution created by the
kernel is able to capture edges in the original image.

A convolutional layer in a neural network applies several kernels to the
input image; the weights, rather than being fixed, are themselves learned as
part of the training algorithm. Subsequent layers of the network flatten out
the multidimensional array and fit dense hidden layers as we have done in
previous sections. The idea is that different convolutions will pick up differ-
ent features. We have seen that one choice of a kernel matrix detects edges;
learned convolutions can identify features such as oriented edges, descriptions
of texture, and basic object types. If the input image is in color, the kernel
matrix K must be a three-dimensional array with weights applied to each
color channel. Similarly, we can apply multiple layers of convolutions to the
image. The third dimension of kernels in the second layer has to match the
size of the number of kernels in the second layer. Stacking convolutions allows
neural networks to extract increasingly complex features from the input data.

For simplicity, we will implement a convolutional neural network with a

240 Neural Networks

FIGURE 8.9: The left image is a black and white image of the Eiffel Tower
(photo from WikiMedia by Arnaud Ligny). The right image shows the filter
obtained by applying the kernel defined in Equation 8.68 to the original image.

single convolutional layer applied to a black and white image. We will also
hard code the kernels to be of size 3-by-3 (the most common choice in image
processing). As most image prediction tasks involve classification, we will build
off of the implementation for multiclass classification from Section 8.7.

A mathematical definition of a convolution is relatively straightforward.
Using the notation of Section 8.3, we will describe a neural network that
replaces the first layer with a convolution. First, we will need to describe the
input using two indices to represent the two spatial dimensions of the data,

ag; =@ (8.69)
Then, assuming we want to use kernels of size k1-by-ke, the output of the first
hidden layer is given by

k1 ko

gk = D D Wi a5+ b (8.70)

m=0n=0

The indices i and j represent the height and width of an input pixel and
k indicates the kernel number. To define the rest of the neural network, we

(x) Convolutional neural networks 241
re-parametrize z! as:

Ze =% a=(i-1)-W-K+(G-1)-K+j (8.71)
with K the total number of kernels and W the width of the input image. Using
z,}, all of our previous equations for dense neural networks hold, including those
for backpropagation.

By applying the definition in Equation 8.70, it is relatively easy to compute
the forward pass step in training neural networks with a single convolutional
layer. How does the backpropagation step work? Notice that equations for

% still hold with no changes. The only steps required are computing the

gradient of the parameters in layer 1 in terms of the derivatives with respect
to z;. Once again, this is achieved by applying the chain rule, first for the
intercepts

of of 0z
95 _ 95, 72
By = 2 XJ: 521, o (8.72)
of
i 7 >

and then for the weights

of of azil,j
&U;@nk B Z:EJ: 821‘1,3‘ aw}n,n,k (8.74)

P
-y 5{_ i (8.75)
i g i,J

Given that a weight or bias term in the convolutional layers affects all of the
outputs in a given filter, it should seem reasonable that our derivatives now
involve a sum over many terms. The only slight complication involves making
sure that we compute the derivatives of z indexed as vector, but then apply
them to the next layer as an array with three dimensions. This is conceptually
simple but some care must be taken in the implementation.

The weights for the first layer of our convolutional neural network need
an array of dimension 3-by-3-by-K, where K is the number of kernels. The
second layer of weights accepts (W — 2) - (H — 2) - K inputs, where W
and H are the width and height of the input image. We will implement
casl_nn_make_weights such that the first size gives the size of the outputs
in the first convolution and the second size gives the number of filters in the
convolution.

Create list of weights and momentum to describe a CNN.

#

Args:

sizes: A vector giving the size of each layer, including

242 Neural Networks

the input and output layers.

#

Returns:

A list with initialized weights, biases, and momentum.
casl_cnn_make_weights <-

function(sizes)

{

L <- length(sizes) - 1L
weights <- vector("list", L)
for (j in seq_len(L))

{
if (j == 1)
{
w <- array(rnorm(3 * 3 * sizes[j + 1]),
dim=c(3, 3, sizes[j + 1]))
v <- array(0,
dim=c(3, 3, sizes[j + 1]1))
} else {
if (j == 2) sizes[j] <- sizes[2] * sizes[1]
w <- matrix(rnorm(sizes[j] * sizes[j + 1],
sd=1/sqrt(sizes[j]1)),
ncol=sizes[j],
nrow=sizes[j + 1])
v <- matrix (0,
ncol=sizes[j],
nrow=sizes[j + 1])
}

weights[[j]] <- list(w=w,
v=v,
b=rnorm(sizes[j + 11))
3
weights
}

The output is, as before, a list containing the weights, velocities, and bias
terms.

The forward propagation step now needs to convolve the weights in the
first layer with the input image.

Apply forward propagation to a set of CNN weights and biases.
#

Args:

x: A numeric vector representing one row of the input.
weights: A list created by casl_nn_make_weights.

sigma: The activation function.

(x) Convolutional neural networks 243

#

Returns:

A list containing the new weighted responses (z) and
activations (a).

casl_cnn_forward_prop <-
function(x, weights, sigma)
{
L <- length(weights)
z <- vector("list", L)
a <- vector("list", L)
for (j in seq_len(L))
{
if (j == 1)
{
a_jl <-x
z[[j]] <- casl_util_conv(x, weights[[j1])
} else {
a_jl <- al[j - 1L]]
z[[j1] <- weights[[j1]1$w %*% a_jl + weights[[j]1]1%$Db
¥
if (§ '=1L)
{
alljl] <- sigma(z[[j11)
} else {
al[jl] <- casl_util_softmax(z[[j]1])
}
}

list(z=z, a=a)

}

The casl_util_conv function called by the implementation of forward prop-
agation function is defined as follows.

Apply the convolution operator.

#

Args:

x: The input image as a matrix.

w: Matrix of the kernel weight.

#

Returns:

Vector of the output convolution.

casl util_conv <-
function(x, w) {
dl <- nrow(x) - 2L
d2 <- ncol(x) - 2L

244 Neural Networks

d3 <- dim(w$w) [3]
z <- rep(0, d1 * d2 * d3)
for (i in seq_len(dl))

{
for (j in seq_len(d2))
{
for (k in seq_len(d3))
{
val <- x[i1 + (0:2), j + (0:2)] * w$wl[, k]
g<-(1-1)*xd2*xd3+ (j -1) »xd3 +k
z[q]l <- sum(val) + w$b[k]
}
}
}
z

}

Notice that this code involves a triple loop, so it will be relatively slow in
native R code. Custom libraries, which we discuss in Section 8.9, provide fast
implementations of the convolution operations.

The backpropagation code is where the real work of the convolutional
neural network happens. The top layers proceed as before, but on the first
layer we need to add up the contributions from each output to the weights
w}n’n. We also need to store the gradient of the bias terms as this is no longer

trivially equal to the gradient with respect to the terms z.

Apply backward propagation algorithm for a CNN.

#

Args:

x: A numeric vector representing one row of the input.
y: A numeric vector representing one row of the respomnse.
weights: A list created by casl_nn_make_weights.

f_obj: Output of the function casl_nn_forward_prop.

sigma_p: Derivative of the activation function.

#

Returns:

A list containing the new weighted responses (z) and
activations (a).

casl_cnn_backward_prop <-
function(x, y, weights, f_obj, sigma_p)
{

z <- f_obj$z; a <- f_obj$a

L <- length(weights)

grad_z <- vector("list", L)

grad_w <- vector("list", L)

(x) Convolutional neural networks

for (j in rev(seq_len(L)))
{
if (j == L)
{
grad_z[[j]] <- alljl] -y
} else {
grad_z[[jl] <- (t(weights[[j + 1]11$w) %x*%
grad_z[[j + 1]11) * sigma_p(z[[j1]1)
}
if (5 == 1)
{

a_jl <-x

dl <- nrow(a_j1) - 2L

d2 <- ncol(a_j1) - 2L

d3 <- dim(weights[[j]1]$w) [3]

grad_z_arr <- array(grad_z[[j]],
dim=c(d1, 42, d3))

grad_b <- apply(grad_z_arr, 3, sum)

grad_w[[jl] <- array(0, dim=c(3, 3, d3))

for (n in 0:2)
{
for (m in 0:2)
{
for (k in seq_len(d3))
{
val <- grad_z_arr[, , k] * x[seq_len(dl) + n,
seq_len(d2) + m]
grad_wl[[jll[n + 1L, m + 1L, k] <- sum(val)
}
+
+

} else {
a_jl <- all[j - 1L]]
grad_wl[j1] <- grad_z[[j1] %) t(a_j1)

}

list(grad_z=grad_z, grad_w=grad_w, grad_b=grad_b)
}

245

246 Neural Networks

Notice that the code is simplified by constructing an array version of the
gradient, grad_z_arr, while working on the first layer parameters.

Finally, we put these parts together in the stochastic gradient descent
function. Care needs to be taken to correctly update the bias terms in the
first layer. Thankfully, R’s vector notation allows us to write one block of
code can be used to update the weights regardless of whether they are stored
as an array (the convolutional layer) or a matrix (the dense layers).

Apply stochastic gradient descent (SGD) to a CNN model.

#

Args:

X: A numeric data matrix.

y: A numeric vector of responses.

sizes: A numeric vector giving the sizes of layers in
the neural network.

epochs: Integer number of epochs to computer.

eta: Positive numeric learning rate.

mu: Non-negative momentum term.

12: Non-negative penalty term for 12-norm.

weights: Optional list of starting weights.

#

Returns:

A list containing the trained weights for the network.

casl_cnn_sgd <-
function(X, y, sizes, epochs, rho, mu=0, 12=0, weights=NULL) {

if (is.null(weights))
{
weights <- casl_cnn_make_weights(sizes)

}

for (epoch in seq_len(epochs))
{
for (i in seq_len(nrow(X)))
{
f_obj <- casl_cnn_forward_prop(X[i,,], weights,
casl_util_ReLU)
b_obj <- casl_cnn_backward_prop(X[i,,], y[i,], weights,
f_obj, casl_util_ReLU_p)

for (j in seq_along(b_obj))
{
grad_b <- if(j == 1) b_obj$grad_b else b_obj$grad_z[[j]]
weights[[j11$b <- weights[[j]11$b -
rho * grad_b
weights[[j11$v <- mu * weights[[jI1]1$v -

(x) Convolutional neural networks 247

rtho * b_obj$grad_wl[j]]
weights[[j1]1$w <- (1 - rho * 12) *
weights[[jI11$w +
weights[[j]1]1$v

weights
}

Note too that we have to be careful to now index the input X as a three-
dimensional array (one dimension for the samples and two for the spatial
dimensions). We will also write a prediction function for the convolutional
network.

Predict values from training a CNN.

#

Args:

weights: List of weights describing the neural network.
X_test: A numeric data matrix for the predictioms.

#

Returns:

A matrix of predicted values.

casl_cnn_predict <-
function(weights, X_test)
{

p <- length(weights[[length(weights)]]$b)

y_hat <- matrix(0, ncol=p, nrow=nrow(X_test))

for (i in seq_len(nrow(X_test)))

{
a <- casl_cnn_forward_prop(X_test[i, ,], weights,

casl_util_ReLU)$a

y_hat[i,] <- al[[length(a)l]

+

y_hat
}

The only differences here are the indices on X and the particular variant of
the forward propagation code applied.

To verify that our convolutional neural network implementation is reason-
able, we will apply it to our small MNIST classification task. We can now
do proper multiclass classification, so the first step is to construct a response
matrix y_mnist with two columns.

248 Neural Networks

y_mnist <- mnist$class[mnist$class %in% c(0, 1)]
y_mnist <- cbind(l - y_mnist, y_mnist)

y_train <- y_mnist[1:6000,]

y_valid <- y_mnist[6001:12000,]

In the convolutional neural network, we now need to keep the dataset X_train
as a three-dimensional array.

X_train <- X_mnist[seq_len(6000), ,]
X_valid <- X_mnist[seq(6001, 12000), ,]

We then pass the training data directly to the neural network training function
casl_cnn_sgd. Our network includes 5 kernels and one hidden dense layer
with 10 neurons. The output layer has two neurons to match the number of
columns in y_train.

out <- casl_cnn_sgd(X_train, y_train,
c(5 x5, 5, 10, 2),
epochs=5L, rho=0.003)

pred <- casl_cnn_predict(out, X_valid)

table(pred[, 2] > 0.5, y_valid[, 2]1)

0 1
FALSE 2962 3
TRUE 13 3022

The results of the model on the validation set show only 16 misclassified
points out of a total 6000, an impressive result that greatly improves on the
dense neural network from Section 8.5. The predictive power is particularly
impressive given that we are working only with images containing 49 total
pixels.

The output of the first convolutional layer will be significantly larger, by
a factor of K, than the input image. In our small test case this is a not a
concern. As we consider larger input images and a corresponding increase in
the number of kernels, this can quickly become an issue. The solution is to
include pooling layers into the neural network. These pooling operators re-
duce the resolution of the image after applying a convolution. Most typically,
they result in a halving of the width and height of the data. Pooling can
be performed by grouping the pixels into 2-by-2 squares and either taking
the average of the activations (mean-pooling) or the maximum of the activa-
tions (max-pooling). Backpropagation can be applied to these pooling layers
by summing the derivatives over the pool for mean-pooling or assigning the
derivative to the pixel with the largest intensity for max-pooling. A common
pattern in convolutional neural networks involves applying a convolutional
layer following by a pooling layer several times, producing many filters that
capture high-level features with a relatively low resolution. We will see an
example of this in our application in Section 8.10.

Implementation and notes 249

8.9 Implementation and notes

In this chapter we have seen that it is relatively easy to implement neural
networks using just basic matrix operations in R. If we want to work with
larger datasets, this approach will only carry us so far. The code will run
relatively slowly as it executes many nested loops. It also cannot as written
take advantage of faster GPU implementations, which are highly optimized
for computing tensor products and utilized in almost all research papers pub-
lished with neural networks. Perhaps most critically, the code as written needs
to be completely re-factored whenever we make any minor change to the ar-
chitecture other than the number of hidden layers and neurons. Fortunately,
there are several libraries purpose-built for building neural networks.

The R package tensorflow [7] provides access to the TensorFlow library
[1]. This is achieved by calling the corresponding Python library by the same
name. TensorFlow provides the low-level functionality for working efficiently
with multidimensional arrays and a generic form of backpropagation. Mod-
els written in TensorFlow are compiled directly to machine code, and can be
optimized with CPU or GPU processors. Keras is a higher-level library built
on top of TensorFlow. It is available in R through the keras package. This
library, which we will make use of in the following applications, allows for
building neural networks out of layer objects. The corresponding backpropa-
gation algorithm is computing automatically and compiled into fast machine
code through TensorFlow. It provides support for many common tweaks to
the basic neural network framework, including convolutional neural networks
(CNNs) and recurrent neural networks (RNNs).

8.10 Application: Image classification with EMNIST

8.10.1 Data and setup

Here we will work with the EMNIST dataset. This is a recent addition to the
MNIST classification data. In place of hand-written digits the EMNIST data
consists of handwritten examples of the 26 letters in the Latin alphabet. Both
upper and lower case letters are included, but these are combined together
into 26 classes. The goal is to use the pixel intensities (a number between 0
and 1) over a 28-by-28 grid to classify the letter.

The data comes in two different parts. This first simply indicates the iden-
tity of the letter and whether it is in the training set or the testing set.

emnist <- read.csv("data/emnist.csv", as.is=TRUE)
head(emnist)

250 Neural Networks

cVOrE
K O~ 0.

A \>
e~
AR
N
qr
144

FIGURE 8.10: Example images from the EMNIST dataset, in alphabetical
order (y and z not shown). The images are usually coded as white on a black
background; we have flipped them to look best in print.

Application: Image classification with EMNIST 251

obs_id train_id class class_name
id_000001 test 6
id_000002 train 9
id_000003 valid 14
id_000004 train 23
id_000005 train 5
id_000006 valid 23

O WN -
XK Fh X O «—.(”

The actual pixel data is contained in a four-dimensional array.

x28 <- readRDS("data/emnist_x28.rds")
dim(x28)

[1] 124800 28 28 1

The first dimension indicates the samples; there are over 120 thousand ob-
servations in the dataset. The next two dimensions indicate the height and
width of the image. In the final dimension, we simply indicate that this image
is black and white rather than color (a color image would have three chan-
nels in the fourth position). A plot showing some example letters is given in
Figure 8.10.

The first step in setting up the data is to convert the categorical variable
class into a matrix with 26 columns. We will make use of the keras function
to_categorical; notice that it expects the first category to be zero.

library (keras)
Y <- to_categorical (emnist$class, num_classes=26L)
emnist$class[seq_len(12)]

[1] 6 914 23 5232417 16 1 5 4

The first few rows and columns of resulting matrix should be as expected
given the first 12 categories.

Y[seq_len(12), seq_len(10)]

(,11 [,21 [,3] [,4] [,8] [,6] [,71 [,8] [,91 [,10]
[1,] 0 0 0 0 0 0 1 0 0
[2,]
(3,]
[4,]
(5,1
(6,1
(7,1]
(s,]
(9,1

O O O O O O oo
O O O O O O oo
O O O O O O oo
O O O O O O oo
O O O O O O oo
O O OO O OO
O O O O O O oo
O O O O O O oo
O O O O O O oo
O OO OO OO O

252 Neural Networks

[10,] 0 1 0 0 0 0 0 0 0 0
[11,] 0 0 0 0 0 1 0 0 0 0
[12,] 0 0 0 0 1 0 0 0 0 0

Next, we need to flatten the pixel data x28 into a matrix. This is achieved by
applying the cbind function of the rows to the array. We then split the data
into training and testing sets.

X <- t(apply(x28, 1, cbind))

X_train <- X[emnist$train_id == "train",]
X_valid <- X[emnist$train_id !'= "train",]
Y _train <- Y[emnist$train_id == "train",]
Y valid <- Y[emnist$train_id != "train",]

The keras library will allow us to give a validation set in addition to the
training set. This allows users to observe how well the model is doing during
training, which can take a while. This aids in the process of early stopping as
we can kill the training if the model appears to start overfitting.

8.10.2 A shallow network

Our first task will be to fit a shallow neural network without any hidden nodes.
This will help to explain the basic functionality of the keras package and allow
us to visualize the learned weights. The first step in building a neural network
is to call the function keras_model_sequential. This constructs an empty
model that we can then add layers to.

model <- keras_model_sequential ()

Next, we add layers to the model using the %>% function. Here we just add
one dense layer with one neuron per column in the output Y. We also need
to specify that the input matrix has 282 columns and that we want to apply
the softmax activation to the top layer.

model %>%
layer_dense(units=26, input_shape=c(2872)) %>’
layer_activation(activation="softmax")

Notice that keras has an un-R like object-oriented calling structure. We do
not need to save the model with the <- sign; the object model is mutable and
changes directly when adding layers. The same calling mechanism works for
training. If we manually terminate the SGD algorithm during training, the
weights up to that point are not lost.

Next, we need to compile the model using the compile function. This is
where we specify the loss function (categorical_crossentropy), the opti-
mization function (SGD, with an 7 of 0.01 and momentum term of 0.8), and
what metrics we want printed with the result.

Application: Image classification with EMNIST 253

model %>% compile(loss=’categorical_crossentropy’,
optimizer=optimizer_sgd(1lr=0.01,
momentum=0.80) ,
metrics=c(’accuracy’))

The model has now been compiled to machine code. Options exist within the
R package to compile for GPU architectures if these are available.

Finally, we run the function fit on the model to train the weights on
the training data. We specify the number of epochs and also pass the the
validation data.

history <- model %>’
fit(X_train, Y_train, epochs=10,
validation_data=list(X_valid, Y_valid))

After fitting the model, we can then run the predict_classes to get the
predicted classes on the entire dataset X.

emnist$predict <- predict_classes(model, X)

tapply(emnist$predict == emnist$class, emnist$train_id,
mean)
train valid

0.7259135 0.7122115

The accuracy rate here is over 70%, which is actually quite good given the
lack of any hidden layers in the network. We can visualize the learned weights
for each letter, as shown in Figure 8.11. Notice that the positive weights often
seem to trace features of each letter.

8.10.3 A deeper network

To achieve better results we need to use a larger and deeper neural network.
The flexibility of the keras library makes this easy to code, though of course
the algorithm takes significantly longer to run. Here we build a neural network
with 4 hidden layers all having 128 neurons. Each layer is followed by a rectified
linear unit and dropout with a probability of 25%.

model <- keras_model_sequential()

model %>%
layer_dense (128, input_shape=c(2872)) %>%
layer_activation(activation="relu") %>%
layer_dropout (rate=0.25) %>%

layer_dense (128, input_shape=c(2872)) %>%
layer_activation(activation="relu") %>%

254 Neural Networks

-It '). 2

|- LA

e

FIGURE 8.11: Visualization of positive weights in a neural network with no
hidden layers. The dark pixels indicate strong positive weights and white pixels
indicate zero or negative weights. Notice that the positive weights seem to
sketch out critical features of the letters, with some (such as M, S, U, and X)
sketching the entire letter shape.

Application: Image classification with EMNIST 255

- o v o - +> ° *
o
0.8
o —o
i data
§ == training
0.7
© validation
0.6
°
2 4 6 8 10
epoch

FIGURE 8.12: Accuracy of the dense neural network on the training and
validation sets at the end of each epoch in the SGD algorithm. The training
accuracy is lower than the validation accuracy due to dropout being turned
on in the former but removed in the latter.

layer_dropout (rate=0.25) %>

layer_dense (128, input_shape=c(2872)) %>%
layer_activation(activation="relu") %>’
layer_dropout (rate=0.25) %>

layer_dense(128, input_shape=c(2872)) %>%
layer_activation(activation="relu") %>%
layer_dropout (rate=0.25) %>%

layer_dense(units=26) %>/
layer_activation(activation="softmax")

model %>} compile(loss=’categorical_crossentropy’,
optimizer=optimizer_rmsprop(lr=0.001),
metrics=c(’accuracy’))

history <- model %>%
fit(X_train, Y_train, epochs=10,
validation_data=list(X_valid, Y_valid))

Figure 8.12 shows the training and validation accuracy during training. The
validation accuracy is better due to the fact that dropout is turned off for the
validation set, but not for the training set during training.

The final model improves on the shallow network, achieving an accuracy
of around 85% on the testing set.

256 Neural Networks

emnist$predict <- predict_classes(model, X)

tapply(emnist$predict == emnist$class, emnist$train_id,
mean)
train valid

0.8754968 0.8570192

Looking at the most confused classes, we see that just a few pairs of letters
are causing most of the problems.

emnist$predict <- letters[emnist$predict + 1]
tab <- dplyr::count(emnist, train_id, predict, class_name,

sort = TRUE)
tab <- tab[tab$train_id == "valid" &
tab$predict != tab$class_name,]

tab
train_id predict class_name n
1 valid i 1 566
2 valid q g 276
3 valid 1 i 96
4 valid e G 69
5 valid o d 69
6 valid u v 67
7 valid g q 59
8 valid o a 59
9 valid v y 59
10 valid o q 57

Distinguishing between ‘i’ and ‘1’ (probably the upper case version of the first
for the lower case version of the second) and ‘q’ and ‘g’ seem to be particularly
difficult.

8.10.4 A convolutional neural network

In order to improve our predictive model further, we will need to employ con-
volutional neural networks. Thankfully, this is relatively easy to do in keras.
To start, we will now need to have the data X un-flattened:

X <- array(x28, dim = c(dim(x28), 1L))
X_train <- X[emnist$train_id == "train", , , , drop=FALSE]
X_valid <- X[emnist$train_id != "train", , , , drop=FALSE]

Then, we build a keras model as usual, but use the convolutional layers
layer_conv_2d and layer_max_pooling_2d. Options for these determine the
number of filters, the kernel size, and options for padding the input.

\UYI NV AQY
&l q Pz

| e AN T NEeY
| 2Kk 2V)&
2004 <L X IV

L I<LV N

& T Ly~ ANl |

/M ¢ 0F (A
*

-
SUFKITWE
FIGURE 8.13: Examples of mis-classified test EMNIST observations by the

convolutional neural network.

258 Neural Networks

model <- keras_model_sequential()
model %>%
layer_conv_2d(filters = 32, kernel_size = c(2,2),
input_shape = c(28, 28, 1),
padding = "same") %>%
layer_activation(activation = "relu") %>%
layer_conv_2d(filters = 32, kernel_size = c(2,2),
padding = "same") %>
layer_activation(activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_dropout(rate = 0.5) %>%

layer_conv_2d(filters = 32, kernel_size c(2,2),

padding = "same") %>
layer_activation(activation = "relu") %>%
layer_conv_2d(filters = 32, kernel_size = c(2,2),

padding = "same") %>
layer_activation(activation = "relu") %>%
layer_max_pooling 2d(pool_size = c(2, 2)) %>%
layer_dropout(rate = 0.5) %>%

layer_flatten() %>%
layer_dense(units = 128) %>

layer_activation(activation = "relu") %>%
layer_dense(units = 128) %>%
layer_activation(activation = "relu") %>%

layer_dropout(rate = 0.5) %>%
layer_dense(units = 26) %>%
layer_activation(activation = "softmax")

Before passing the convolutional input into the dense layers at the top of the
network, the layer layer_flatten is used to convert the multidimensional
input into a two-dimensional output.

Compiling and fitting a convolutional neural network is done exactly the
same way that dense neural networks are used in keras.

model %>} compile(loss = ’categorical_crossentropy’,
optimizer = optimizer_rmsprop(),
metrics = c(’accuracy’))

history <- model %>’
fit(X_train, Y_train, epochs = 10,
validation_data = list(X_valid, Y_valid))

The prediction accuracy is now significantly improved, with a testing accuracy
of over 90%.

FExercises 259

emnist$predict <- predict_classes(model, X)

tapply(emnist$predict == emnist$class, emnist$train_id,
mean)
train valid

0.9241667 0.9207372

Figure 8.13 shows a selection of those images which are still incorrectly clas-
sified (known as negative examples). While many of these are recognizable at
first glance by human readers, many of them are quite unclear with at least
two feasible options for the letter.

8.11 Exercises

1.

Using the keras package functions, use a neural network to predict the
tip percentage from the NYC Taxicab dataset in Section 3.6.1. How does
this compare to the ridge regression approach?

. Write a function to check the derivatives of the CNN backpropagation

routine from Section 8.8. Does it match the analytic derivatives?

. The keras package contains the function application_vggl6 that loads

the VGG16 model for image classification. Load this model into R and
print out the model. In each layer, the number of trainable weights is
listed. What proportion of trainable weights is in the convolutional layers?
Why is this such a small portion of the entire model? In other words, why
do dense layers have many more weights than convolutional layers?

Adjust the kernel size, and any other parameters you think are useful, in
the convolutional neural network for EMNIST in Section 8.10.4. Can you
improve on the classification rate?

. Implement dropout in the dense neural network implementation from Sec-

tion 8.4.

. Change the implementation of backpropagation from Section 8.4 to include

a mini-batch of size 16. You can assume that the data size is a multiple of
16.

Add an ¢;-penalty term in addition to the f5-penalty term in the code from
Section 8.6. You will need to first work out analytically how the updates
should be performed.

260 Neural Networks

8. Write a function that uses mean absolute deviation as a loss function,
instead of mean squared error. Test the use of this function with a simu-
lation containing several outliers. How well do neural networks and SGD
perform when using robust techniques?

9. Rewrite the functions from Section 8.8 to allow for a user supplied kernel
size (you may assume that it is square).

10. Implement zero padding in the convolutional neural network implementa-
tion from Section 8.8.

